设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,AF1=3BF1
(1)若AB=4,∆ABF2的周长为16,求AF2; (2)若cos∠AF2B=35,求椭圆E的离心率.
有一质量非均匀分布的细棒,已知其线密度为ρ(x)=2x(取细棒所在直线为x轴,细棒的一端为原点),棒长为l,试用定积分表示细棒的质量m,并求出m的值.
根据定积分的几何意义推出下列积分的值.(1) xdx; (2)cos xdx.
设力F作用在质点m上使m沿x轴从x=1运动到x=10,已知F=x2+1且力的方向和x轴的正向相同,求F对质点m所作的功.
求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形面积.
求抛物线f(x)=1+x2与直线x=0,x=1,y=0所围成的平面图形的面积S.