设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率; (2)X表示同一工作日需使用设备的人数,求X的数学期望.
(数列首项,前项和与之间满足. ⑴求证:数列是等差数列; ⑵求数列的通项公式; ⑶设存在正数,使对都成立,求的最大值.
在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD, 且PA=2AB (1)求证:平面PAC⊥平面PBD; (2)求二面角B—PC—D的余弦值.
(.如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD, ∠ABC=60°,E,F分别是BC,PC的中点. (1)证明:AE⊥PD; (2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为, 求二面角E—AF—C的余弦值.
(如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点. (1)求证:PB⊥DM; (2)求BD与平面ADMN所成的角.
(在正四面体P—ABC中,D,E,F分别是AB、BC、 CA的中点,求证: (1)BC∥平面PDF;(2)BC⊥平面PAE