为保增长、促发展,某地计划投资甲、乙两个项目,根据市场调研,知甲项目每投资100万元需要配套电能2万千瓦时,可提供就业岗位24个,GDP增长260万元;乙项目每投资100万元需要配套电能4万千瓦时,可提供就业岗位36个,GDP增长200万元.已知该地为甲、乙两个项目最多可投资3000万元,配套电能100万千瓦时,若要求两个项目能提供的就业岗位不少于840个,问如何安排甲、乙两个项目的投资额,才能使GDP增长的最多.
(本小题满分15分)已知四边形中,, 为中点,连接,将沿翻折到,使得二面角的平面角的大小为. (Ⅰ)证明:; (Ⅱ)已知二面角的平面角的余弦值为,求的大小及的长.
(本小题满分15分)已知点是函数图象的一个对称中心. (Ⅰ)求实数的值; (Ⅱ)求在闭区间上的最大值和最小值及取到最值时的对应值.
设函数 (Ⅰ)当时,讨论函数f(x)的零点个数; (Ⅱ)若对于给定的实数,存在实数,对于任意实数,都有不等式恒成立,求实数的取值范围。
如图,已知为抛物线的焦点,点在该抛物线上,其中关于轴对称(在第一象限),且直线经过点. (Ⅰ)若的重心为,求直线的方程; (Ⅱ)设,其中为坐标原点,求的最小值.
如图,正四棱锥中,分别为的中点。设为线段上任意一点。 (Ⅰ)求证:; (Ⅱ)当为线段的中点时,求直线与平面所成角的余弦值。