已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.(1)求出轨迹C的方程,并讨论曲线C的形状;(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.
(12分)(2010·无锡模拟)已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
(13分)已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
(12分)若集合A={x|x2-2x-8<0},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求;(2)若A∩B=∅,求实数m的取值范围;(3)若A∩B=A,求实数m的取值范围.
(12分)已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且非p是非q的必要不充分条件,求实数m的取值范围.
(12分)(2010·徐州模拟)已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.