已知,,且与夹角为120°求(1); (2); (3)与的夹角
(本小题满分12分)已知数列是等差数列,且,数列的前项的和为,且.(1)求数列,的通项公式; (2)记,求证:.
(本小题满分13分)已知函数(1)当时,求函数的单调区间;(2)当时,求函数的最大值的表达式.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(文)对于曲线,若存在非负实数和,使得曲线上任意一点,恒成立(其中为坐标原点),则称曲线为有界曲线,且称的最小值为曲线的外确界,的最大值为曲线的内确界.(1)写出曲线的外确界与内确界;(2)曲线与曲线是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;(3)已知曲线上任意一点到定点的距离之积为常数,求曲线的外确界与内确界.
本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分已知数列的首项为,记().(1)若为常数列,求的值;(2)若为公比为的等比数列,求的解析式;(3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式;若不存在,请说明理由.
本题共有2个小题,第1小题满分6分,第2小题满分8分沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).