已知函数f(x)=(x-a)(x-b)2,a,b是常数.(1)若a≠b,求证:函数f(x)存在极大值和极小值;(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度;(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.
在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果) (1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ; (3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.
解方程和不等式组: (1) (2)
先化简,再求值:,其中
如图1,在平面直角坐标系内,已知点,,,,记线段为,线段为,点是坐标系内一点.给出如下定义:若存在过点的直线l与,都有公共点,则称点是联络点. 例如,点是联络点. (1)以下各点中,__________________是联络点(填出所有正确的序号); ①;② ;③. (2)直接在图1中画出所有联络点所组成的区域,用阴影部分表示; (3)已知点M在y轴上,以M为圆心,r为半径画圆,⊙M上只有一个点为联络点,①若,求点M的纵坐标; ②求的取值范围.
已知点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=1800. (1)利用图1,求证:PA=PB; (2)如图2,若点是与的交点,当时,求PC与PB的比值; (3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.