已知函数f(x)=(x-a)(x-b)2,a,b是常数.(1)若a≠b,求证:函数f(x)存在极大值和极小值;(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度;(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.
根据空气质量指数(为整数)的不同,可将空气质量分级如下表:
某市2013年10月1日—10月30日,对空气质量指数进行监测,获得数据后得到如图的条形图: (1)估计该城市本月(按30天计)空气质量类别为中度污染的概率; (2)在上述30个监测数据中任取2个,设为空气质量类别颜色为紫色的天数,求的分布列.
在中,角、、的对边分别为、、,且,. (1)求的值; (2)设函数,求的值.
已知等差数列的首项,公差,且其第二项、第五项、第十四项分别是等比数列的第二、三、四项. (1)求数列与的通项公式; (2)令数列满足:=,求数列的前101项之和; (3)设数列对任意,均有++ +=成立,求的值.
如图,边长为2的正方形所在的平面与平面垂直,与的交点为, ,且. (1)求证:平面; (2)求直线与平面所成线面角的正切值.
在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线. (1)求角的大小; (2)如果,且,求的值.