已知函数f(x)=(x-a)(x-b)2,a,b是常数.(1)若a≠b,求证:函数f(x)存在极大值和极小值;(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度;(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.
已知函数是定义在上的奇函数.(1)若,求在递增的充要条件;(2)若,,不等式恒成立,求实数的取值范围.
商场销售的某种促销商品每件售价为45元,成本为20元.对该商品进行促销:顾客每购买一件,可参加抽奖.抽奖箱中有大小完全相同的4个小球,编号分别为1,2,3,4.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出编号为4的小球,则停止取球.获奖规则如下:依次取到编号为1,2,3,4的小球为一等奖;不分顺序取到标有1,2,3,4的球,为二等奖;取到的4个球中有标有1,2,3的球为三等奖.(1)求分别获得一、二、三等奖的概率;(2)若奖励为返还现金,一等奖、二等奖、三等奖奖金数为,统计表明:每天的销售y(件)与一等奖的奖金额x(元)的关系式为,问x设定为多少最佳?并说明理由.
数列中,在平面直角坐标系中,设,且. (1)求数列的通项公式和前项和; (2)设,数列的前项和为,求使得 对都成立的所有正整数的值.
在中,分别为内角的对边,满足.(1)求A的大小;(2)若,试求内角B、C的大小.
已知函数.(1)求函数的最小值;(2)已知,命题:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.