如图所示,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3 cm,周期为3 s,且物体向右运动到A点(距平衡位置最远处)开始计时.(1)求物体离开平衡位置的位移x(cm)和时间t(s)之间的函数关系式;(2)求该物体在t=5 s时的位置.
(Ⅰ)已知函数()的最小正周期为.求函数的单调增区间; (Ⅱ)在中,角对边分别是,且满足.若,的面积为.求角的大小和边b的长.
一个几何体的三视图如下图所示(单位:), (1)该几何体是由那些简单几何体组成的; (2)求该几何体的表面积和体积.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]. (1)求m的值; (2)若a,b,c∈R+,且++=m,求证:a+2b+3c≥9.
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数). (Ⅰ)写出直线的普通方程与曲线的直角坐标方程; (Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=ACAE=AB,BD,CE相交于点F. (Ⅰ)求证:A,E,F, D四点共圆; (Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.