如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;(3)过且与AB垂直的直线交椭圆于P、Q,若的面积是20 ,求此时椭圆的方程.
设二次函数在[3,4]上至少有一个零点,求的最小值。
已知抛物线,过轴上一点的直线与抛物线交于点两点。证明,存在唯一一点,使得为常数,并确定点的坐标。
已知: ,求证:.
已知圆的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(Ⅰ)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(Ⅱ)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ);(Ⅱ).