如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;(3)过且与AB垂直的直线交椭圆于P、Q,若的面积是20 ,求此时椭圆的方程.
已知圆:,定点A在直线上,点在线段上,过点作圆的切线,切点为.(1)若,求直线的方程;(2)经过三点的圆的圆心是,求线段长的最小值。
如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=,DC=, F是BE的中点。求证:(1) FD∥平面ABC;(2) 平面EAB⊥平面EDB。
某单位从市场上购进一辆新型轿车,购价为36万元,该单位使用轿车时,一年需养路费、保险费、汽油费、年检费等约需6万元,同时该车的年折旧率为10%(即这辆车每年减少它的价值的10%),试问:使用多少年后,该单位花费在该车上的费用就达36万元,并说明理由。
已知定义域为的函数同时满足:① 对于任意的,总有;②;③ 当时有.(1)求的值;(2)求函数的最大值;(3)证明:当时,;当时,.
在等差数列中,,。(1) 求数列的通项公式;(2) 令,求数列的前项和