命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sin mx的周期小于,试判断p∨q,p∧q,p的真假性.
(本小题满分14分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且,. (1)求证:平面; (2)设FC的中点为M,求证:∥平面; (3)求三棱锥F-CBE的体积.
(本小题满分14分)已知向量,,函数.(1)求函数的解析式;(2)当时,求的单调递增区间;(3)说明的图象可以由的图象经过怎样的变换而得到.
.(本小题满分12分)已知集合,,(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
、(本小题满分14分)设函数 (Ⅰ)求的单调区间; (Ⅱ)当时,若方程在上有两个实数解,求实数t的取值范围; (Ⅲ)证明:当m>n>0时,
(本小题满分14分) 已知数列满足:(Ⅰ)探究数列是等差数列还是等比数列,并由此求数列的通项公式; (Ⅱ)求数列的前n项和