(本小题满分14分) 已知数列满足:(Ⅰ)探究数列是等差数列还是等比数列,并由此求数列的通项公式; (Ⅱ)求数列的前n项和
求与椭圆有公共焦点,且离心率的双曲线方程.
已知偶函数()在点处的切线与直线垂直,函数. (Ⅰ)求函数的解析式. (Ⅱ)当时,求函数的单调区间和极值点; (Ⅲ)证明:对于任意实数x,不等式恒成立.(其中e=2.71828…是自然对数的底数)
已知中,点,动点满足(常数),点的轨迹为Γ. (Ⅰ)试求曲线Γ的轨迹方程; (Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.
某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克. (Ⅰ)求的值; (Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使该商场每日销售该商品所获得的利润最大.
如图所示,和两点分别在射线(点,分别在第一,四象限)上移动,且为坐标原点,动点满足. (Ⅰ)求的值; (Ⅱ)求动点的轨迹方程,并说明它表示什么曲线.