已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)若直线与椭圆相交于两点,且,判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
(本小题满分11分)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。(1)求抛物线的标准方程;(2)若的三个顶点在抛物线上,且点的横坐标为1,过点分别作抛物线的切线,两切线相交于点,直线与轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由。
(本小题满分10分)已知函数。(1)当时,求函数的单调增区间;(2)若对任意, 恒有,求的取值范围。
(本小题满分10分)椭圆的离心率为,且过点。(1)求椭圆的方程;(2)设直线与椭圆交于两点,,求的值。
(本小题满分9分)要制做一个体积为72的长方体带盖箱子,并且使长宽之比为,设箱子的表面积为,宽为。(1)写出箱子的表面积关于宽的函数解析式,并写出函数的定义域;(2)求箱子的表面积的最小值及取得最小值时的的值。
(本小题满分9分)命题:“方程表示焦点在轴上的双曲线”,命题:“在区间 上,函数单调递增”,若是真命题,是真命题,求实数的取值范围。