设函数.(1)当时,求过点且与曲线相切的切线方程;(2)求函数的单调递增区间;(3)若函数有两个极值点,且,记表示不大于的最大整数,试比较与的大小.
在锐角△ABC中,cos B+cos (A-C)=sin C. (Ⅰ) 求角A的大小; (Ⅱ) 当BC=2时,求△ABC面积的最大值.
已知函数. (Ⅰ)当时,求函数在,上的最大值、最小值; (Ⅱ)令,若在,上单调递增,求实数的取值范围.
已知函数,在点处的切线方程是(e为自然对数的底)。 (1)求实数的值及的解析式; (2)若是正数,设,求的最小值; (3)若关于x的不等式对一切恒成立,求实数的取值范围.
在△中,角、、所对的边分别为、、,且. (Ⅰ)若,求角; (Ⅱ)设,,试求的最大值.
已知不等式的解集为A,函数的定义域为B. (Ⅰ)若,求的取值范围; (Ⅱ)证明:函数的图象关于原点对称。