已知椭圆()的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形. (1)求椭圆的方程; (2)若、分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点Q,使得以为直径的圆恒过直线的交点,若存在,求出点Q的坐标;若不存在,说明理由.
已知函数(其中为常数). (Ⅰ)当时,求函数的单调区间; (Ⅱ) 当时,设函数的3个极值点为,且.证明:.
在平面直角坐标系中,过点的直线与抛物线相交于A、B两点.设, (1)求证:为定值 (2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E,F分别为PC,CD的中点,DE = EC (1)求证:平面ABE⊥平面BEF; (2)设PA = a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围。
某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学校规定:平均名次小于或等于40.0者为优秀,大于40.0者为不优秀. (1)对名次优秀赋分2,对名次不优秀赋分1.从这20名学生中随机抽取2名学生,若用表示这2名学生两科名次赋分的和,求的分布列和数学期望; (2)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关? 附:,其中
己知函数 (1)求函数的最小正周期. (2)记△ABC的内角A、B、C的对边长分别为a、b、c,若,、b=1、c=,求a的值.