已知椭圆()的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形. (1)求椭圆的方程; (2)若、分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点Q,使得以为直径的圆恒过直线的交点,若存在,求出点Q的坐标;若不存在,说明理由.