如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式;(2)试探究的外接圆的圆心位置,并求出圆心坐标;(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.
如图,正方形ABCD中,点E在对角线AC上,连接EB、ED. (1)求证:△BCE≌△DCE; (2)延长BE交AD于点F,若∠DEB=140º,求∠AFE的度数.
(1)解不等式:2+≤x; (2)解方程组:
(1)计算:+-; (2)化简:
如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒 (0<t<5). (1)当t为何值时,四边形PQCM是平行四边形? (2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式; (3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由; (4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.
如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N. (1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点; (2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形; (3)将图1中△BCE绕点B旋转到图3位置时, 当A,B,M,N在同一直线上时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.