如图,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为32,点E在侧棱AA1上,点F在侧棱BB1上,且AE=22,BF=2. (I) 求证:CF⊥C1E; (II)求二面角E-CF-C1的大小.
数列是递增的等比数列,且,.求数列的通项公式;若,求证数列是等差数列;若,求的最大值.
如图,已知面,于D,。(1)令,,试把表示为的函数,并求其最大值;(2)在直线PA上是否存在一点Q,使得?
若实数、、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)已知函数的定义域.任取,等于 和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
已知复数, , , 求:(1)求的值; (2)若,且,求的值.
(本小题14分)已知函数(Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;(Ⅱ)在(Ⅰ)的结论下,设函数的最小值;(Ⅲ)设函数的图象C1与函数的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.