(理)如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:;(2)求平面PAD与平面所成的锐二面角的余弦值;
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4.(1)写出椭圆的方程和焦点坐标.(2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
设,若,,.(1)若,求的取值范围;(2)判断方程在内实根的个数.
已知函数 .(1)若,求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较与的大小,并证明你的结论.
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.(Ⅰ)求抛物线的标准方程;(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
在等腰梯形中,,,,是的中点.将梯形绕旋转,得到梯形(如图).(1)求证:平面; (2)求证:平面;(3)求二面角的余弦值.