设,而.(1)若最大,求能取到的最小正数值.(2)对(1)中的,若且,求.
中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手). (1)求甲、乙两位选手都进入第三轮比赛的概率; (2)求甲选手在第三轮被淘汰的的概率.
已知数列满足:,其中为数列的前项和. (1)试求的通项公式; (2)若数列满足:,试求的前项和.
在中,角A、B、C的对边分别为、、,且,,边上中线的长为. (1) 求角和角的大小; (2) 求的面积.
已知抛物线,直线截抛物线C所得弦长为. (1)求抛物线的方程; (2)已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.
已知函数在处取得极小值. (1)求的值; (2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.