(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.(Ⅰ)估计这所学校成绩在90~140分之间学生的参赛人数; (Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点, 且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足||||+ ·=0,求动点P(x,y)的轨迹方程.
如图所示,过点P(2,4)作互相垂直的直线l1、l2.若l1交x轴于A,l2交y轴于B,求线段AB中点M的轨迹方程.
在R上可导的函数f(x)=x3+ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值,求点(a,b)对应的区域的面积以及的取值范围.
两种大小不同的钢板可按下表截成A,B,C三种规格成品:
某建筑工地需A,B,C三种规格的成品分别为15,18,27块,问怎样截这两种钢板,可得所需三种规格成品,且所用钢板张数最小.