已知等比数列中各项均为正,有,,等差数列中,,点在直线上.(1)求和的值;(2)求数列,的通项和;(3)设,求数列的前n项和.
等差数列的前项和为,已知为整数,且. (1)求的通项公式; (2)设,求数列的前项和.
的内角的对边分别为,已知,,求.
对于数对序列,记,,其中表示和两个数中最大的数. (1)对于数对序列,求的值;
(2)记为四个数中最小的数,对于由两个数对组成的数对序列和,试分别对和两种情况比较和的大小;(3)在由五个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).
已知椭圆 C : x 2 + 2 y 2 = 4 . (1)求椭圆 C 的离心率; (2)设 O 为原点,若点 A 在椭圆 C 上,点 B 在直线 y = 2 上,且 O A ⊥ O B ,试判断直线 A B 与圆 x 2 + y 2 = 2 的位置关系,并证明你的结论.
已知函数. (1)求证:; (2)若对恒成立,求的最大值与的最小值.