(本题满分14分)如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面面,是中点.(1) 证明:∥平面;(2) 求三棱锥的体积. 图1 图2
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。 (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小.
已知函数. (1)求的单调递增区间; (2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.
已知数列的前n项和为,. (1)求; (2)求证:数列是等比数列; (3)求.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)当时,解不等式; (Ⅱ)若的最小值为1,求a的值.
(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C:,直线(t为参数). (Ⅰ)写出椭圆C的参数方程及直线的普通方程; (Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线的距离相等,求点P的坐标.