已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.(1)求抛物线的方程;(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;(3)设点、是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
已知向量(>0,0<<),函数,的图象的相邻两对称轴之间的距离为2,且过点。(1)求的表达式;(2)求的值。
(13分) 已知点A,B的坐标分别是(0,–1),(0,1),直线AM,BM相交于点M,且它们的斜率之积为.(10求点M的轨迹C的方程;(2)过D(2,0)的直线l与轨迹C有两不同的交点时,求l的斜率的取值范围;(3)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),试求与面积之比的取值范围(O为坐标原点);
(13分) 已知曲线C:的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.(1) 证明:是等比数列;(2) 当对一切恒成立时,求t的取值范围;(3) 记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
(13分) 已知函数,(a > 0)(1)求a的值,使点M(, )到直线的最短距离为;(2)若不等式在[1,4]恒成立,求a的取值范围.
(12分) 已知,,,.(1) 当时,求使不等式成立的x的取值范围;(2) 当m﹥0时,求使不等式成立的x的取值范围.