已知椭圆C:( )的离心率为,点(1,)在椭圆C上.(1)求椭圆C的方程; (2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点;(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
(本题12分)已知是定义在R上的函数, 且在(-1,0)和(4,5)上有相同的单调性,在(0,2)和(4,5)上 有相反的单调性. (1) 求的值; (2) 在函数的图象上是否存在一点,使得在点的 切线斜率为?若存在,求出点的坐标;若不存在,请说明理由.
设函数. (1)若在和处有不同的极值,且极大值为4, 极小值为1,求及实数的值; (2) 若在上单调递增且,求的最大值.
(本题10分)在等比数列中,,, 求数列的前6项和.
已知函数是定义在R上的函数,其图象与x轴的一个交点 为,若函数的图象在上是减函数,在上是增函数。 (1)求的值; (2)求的取值范围; (3)在函数的图象上是否存在一点,使得曲线在点处的切线 的斜率为3?若存在,求出点的坐标;若不存在,说明理由。
设奇函数的图像在点处切线的斜率等于,又. (1)求函数的解析式; (2)设函数的导函数, 求函数的单调区间.