已知椭圆C:( )的离心率为,点(1,)在椭圆C上.(1)求椭圆C的方程; (2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点;(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数. (1)用xn表示xn+1; (2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式; (3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点. (1)求椭圆的方程; (2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
已知函数在区间上为单调增函数,求的取值范围.
抛物线的焦点在轴正半轴上,过斜率为的直线和轴交于点,且(为坐标原点)的面积为,求抛物线的标准方程.
(本小题满分12分) 设函数R,求函数在区间上的最小值.