(本小题满分12分)某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05, 此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
(本小题满分14分)对定义域分别是、的函数、, 规定:函数 已知函数,. (1)求函数的解析式; ⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为. (1)求椭圆的方程。 (2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
(本小题满分12分) 已知等差数列满足:,.的前n项和为. (1)求及; (2)若,(),求数列的前项和.
(本小题满分12分) 向量 (1)若a为任意实数,求g(x)的最小正周期; (2)若g(x)在[o,)上的最大值与最小值之和为7,求a的值,