如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E为PA的中点,F为PC上不同于P、C的任意一点.(1)求证:PC∥面EBD(2)求异面直线AC与PB间的距离(3)求三棱锥E-BDF的体积.
已知定义域为R的函数是奇函数. (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
设,,函数 (1)用五点作图法画出函数在一个周期上的图象; (2)求函数的单调递减区间和对称中心的坐标; (3)求不等式的解集; (4)如何由的图象变换得到的图象.
(本小题共13分)已知数列的前项和满足,,. (Ⅰ)如果,求数列的通项公式; (Ⅱ)如果,求证:数列为等比数列,并求; (Ⅲ)如果数列为递增数列,求的取值范围.
(本小题共14分)在平面直角坐标系中,椭圆:的一个顶点为,离心率为. (Ⅰ)求椭圆的标准方程; (Ⅱ)直线过点,过作的平行线交椭圆于P,Q两点,如果以PQ为直径的圆与直线相切,求的方程.
(本小题共13分)已知函数. (Ⅰ)求函数的极小值; (Ⅱ)过点能否存在曲线的切线,请说明理由.