如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。(1)求证:直线CD的斜率为定值;(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求的值。
(本小题满分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。 (1)证明:A1B1⊥C1D; (2)当的大小。
本小题满分14分)已知等差数列的前项和为,且,。 (1)求数列的通项公式; (2)若数列满足,求数列的前项和
(本小题满分12分)在中,,,是角,,的对边,若,且,(1)求的面积;(2)若,求和的值.
(本小题满分12分)已知二次函数满足条件,及。 (1)求函数的解析式; (2)求在上的最值。
已知是定义在[-1,1]上的奇函数,当,且时有. (1)判断函数的单调性,并给予证明; (2)若对所有恒成立,求实数m的取值范围.