已知二次函数满足条件,及.(1)求的解析式;(2)求在上的最值.
选修4﹣2:矩阵与变换已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=(),并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=(),=().(1)求矩阵M;(2)求M5α.
给定矩阵,;求A4B.
已知矩阵M=的两个特征值分别为λ1=﹣1和λ2=4.(1)求实数a,b的值;(2)求直线x﹣2y﹣3=0在矩阵M所对应的线性变换作用下的象的方程.
已知矩阵A=(k≠0)的一个特征向量为=,矩阵A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).(1)求实数a,k的值;(2)求直线x+2y+1=0在矩阵A的对应变换下得到的图形方程.
已知矩阵,其中a,b,c∈R,若点P(1,﹣2)在矩阵M的变换下得到点Q(﹣4,0),且属于特征值﹣1的一个特征向量是,求a,b,c之值.