某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.
(本小题满分13分)某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和的函数关系式(写出函数定义域);(2)怎样设计能使取得最大值,最大值为多少?
(本小题满分12分)已知下列三个方程:至少有一个方程有实数根,求实数的取值范围.
(本小题满分12分)已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围.
(本小题满分12分)在中,角、、的对边分别为、、,且满足.(1)求角的大小;(2)当时,求的面积.
( (本小题满分12分)已知.(1)当时,求上的值域; (2) 求函数在上的最小值;(3) 证明: 对一切,都有成立