某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.
(本小题12分)在正三棱柱中,底面三角形ABC的边长为,侧棱的长为,D为棱的中点. ①求证:∥平面 ②求二面角的大小 ③求点到平面的距离.
(本小题12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知, ,且∥ (1)求角B的大小 (2)若b=1,求△ABC面积的最大值
(本小题14分)已知函数, ①求函数的单调区间. ②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围. ③求证:
(1)(本小题6分)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离 (2)(本小题7分)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程.
(本小题12分)已知数列是公差为1的等差数列,是公比为2的等比数列,分别是数列和前n项和,且 (1)分别求,的通项公式. (2)若,求n的范围 (3)令,求数列的前n项和.