已知向量(1)当时,求的值; (2)求函数在上的值域.
在数列中,,,,试猜想这个数列的通项公式.
设直线与抛物线所围成的图形面积为S,它们与直线围成的面积为T, 若U=S+T达到最小值,求值.
一物体按规律x=bt3作直线运动,式中x为时间t内通过的距离,媒质的阻力正比于速度的平方.试求物体由x=0运动到x=a时,阻力所作的功分析:
物体A以速度在一直线上运动,在此直线上与物体A出发的同时,物体B在物体A的正前方5m处以的速度与A同向运动,问两物体何时相遇?相遇时物体A的走过的路程是多少?(时间单位为:s,速度单位为:m/s)
甲乙两地相距SKm,汽车从甲地匀速行驶到乙地,速度不得超过CKm/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成; 可变部分与速度V(Km/h)的平方成正比比例系数为b, 固定成本为a.(1)把全程运输成本y(元)表示为速度V(km/h)的函数, 并指出这个函数的定义域;(2)为了使全程运输成本最小; 汽车应以多大的速度行驶.