已知椭圆的左右焦点分别为,点为短轴的一个端点,.(1)求椭圆的方程;(2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证: 为定值.
已知定义域为R的函数是奇函数.(1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
设,,函数 (1)用五点作图法画出函数在一个周期上的图象;(2)求函数的单调递减区间和对称中心的坐标;(3)求不等式的解集; (4)如何由的图象变换得到的图象.
(本小题共13分)已知数列的前项和满足,,.(Ⅰ)如果,求数列的通项公式;(Ⅱ)如果,求证:数列为等比数列,并求;(Ⅲ)如果数列为递增数列,求的取值范围.
(本小题共14分)在平面直角坐标系中,椭圆:的一个顶点为,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线过点,过作的平行线交椭圆于P,Q两点,如果以PQ为直径的圆与直线相切,求的方程.
(本小题共13分)已知函数.(Ⅰ)求函数的极小值;(Ⅱ)过点能否存在曲线的切线,请说明理由.