如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(1)求该椭圆的标准方程.(2)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
己知数列满足:, (1) 求a2,a3; (2) 设,求证是等比数列,并求其通项公式; (3) 在(2)条件下,求数列前100项中的所有偶数项的和S。
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC 沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。 (Ⅰ) 证明:BE⊥CD’; (Ⅱ) 求二面角D'-BC -E的余弦值,
甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3 分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为 (1)求甲获第一名且丙获第二名的概率: (2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
已知,,函数 (1)求f(x)的最小正周期; (2)当时,求函数f(x)的值域.
(本小题满分14分) 已知数列中,a1=3,a2=5,其前n项和Sn满足 令 (Ⅰ)求数列的通项公式: (Ⅱ)若,求证: