设函数f(x)=(x-a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a; (2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.
如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,PD=AB=2, E,F,G分别是PC,PD,BC的中点. (1)求三棱锥E-CGF的体积; (2)求证:平面PAB//平面EFG;
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点. (1)求证:EF//平面A′BC; (2)求直线A′B与平面A′DE所成角的正切值.
已知点P与两个定点O(0,0),A(-3,0)距离之比为. (1)求点P的轨迹C方程; (2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.
如图,在直三棱柱ABC-A1B1C1中,底面为等腰直角三角形,AC⊥BC,点D是AB的中点,侧面BB1C1C是正方形. (1) 求证AC⊥B1C;(2)求二面角B-CD-B1平面角的正切值.
已知直线l经过A,B两点,且A(2,1),=(4,2). (1)求直线l的方程; (2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.