设函数f(x)=(x-a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a; (2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.
函数是的导函数. (Ⅰ)求函数的最大值和最小正周期; (Ⅱ)若的值.
(本小题满分14分)给定函数 (1)试求函数的单调减区间; (2)已知各项均为负的数列满足,求证:; (3)设,为数列的前项和,求证:。
(本小题满分14分)如图,已知曲线与曲线交于点.直线与曲线分别相交于点. (Ⅰ)写出四边形的面积与的函数关系; (Ⅱ)讨论的单调性,并求的最大值.
(本小题满分14分)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
(Ⅰ)求数列的通项公式; (Ⅱ)若数列满足 ,记数列的前n项和为,证明
(本小题满分12分)如果直线与轴正半轴,轴正半轴围成的四边形封闭区域(含边界)中的点,使函数的最大值为8,求的最小值