上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
已知圆C:,直线。 (1)当为何值时,直线与圆C相切; (2)当直线与圆C相交于A、B两点,且AB=时,求直线的方程。
已知命题P:任意“,”,命题q:“存在”若“p或q”为真,“p且q”为假命题,求实数的取值范围。
已知函数。 (1)若在是增函数,求的取值范围; (2)若且时,恒成立,求的取值范围.
在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,设线段的中点的轨迹为 (1)写出点的轨迹方程; (2)设直线与轨迹交于两点,当为何值时,?
设函数在时取得极值. (1)求的值; (2)求函数的单调区间.