如图,在三棱锥 P - A B C 中, A B = A C , D 为 B C 的中点, P O ⊥ 平面 A B C ,垂足 O 落在线段 A D 上,已知 B C = 8 , P O = 4 , A O = 3 , O D = 2
(1)证明: A P ⊥ B C ;
(2)在线段 A P 上是否存在点 M ,使得二面角 A - M C - β 为直二面角?若存在,求出 A M 的长;若不存在,请说明理由.
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。 (I)求线段 的值; (II)求直线BD1与平面BDE所成角的正弦值;
已知等差数列的前项和为,且,. (1)求数列的通项; (2)设,求数列的前项和.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(答:“是”或“否”) (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率
已知二次函数直线(其中,为常数);.若直线1、2与函数的图象以及,轴与函数的图象所围成的封闭图形如阴影所示. (1)求、、的值; (2)求阴影面积关于的函数的解析式; (3)若问是否存在实数,使得的图象与的图象有且只有两个不同的交点?若存在,求出的值;若不存在,说明理由.
已知动点到点的距离,等于它到直线的距离. (1)求点的轨迹的方程; (2)过点任意作互相垂直的两条直线,分别交曲线于点和. 设线段,的中点分别为,求证:直线恒过一个定点; (3)在(2)的条件下,求面积的最小值