已知函数的图象过坐标原点O,且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值;(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
已知,比较下列各题中两个代数式值的大小: (1)与; (2)与.
已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为; (1)求椭圆的离心率; (2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
已知椭圆的离心率为,过右顶点的直线与椭圆相交于、两点,且. (1)求椭圆和直线的方程; (2)记曲线在直线下方的部分与线段AB所围成的平面区域(含边界)为.若曲线与有公共点,试求实数的最小值.
已知舰在舰的正东,距离6公里,舰在舰的北偏西30°,距离4公里,它们准备围找海洋动物,某时刻舰发现动物信号,4秒后,舰,同时发现这种信号,于是发射麻醉炮弹,设舰与动物都是静止的,动物信号的传播速度为1公里/1秒,求舰炮击的方位角.
已知抛物线方程为,过点的直线AB交抛物线于点、,若线段的垂直平分线交轴于点,求的取值范围.