如图,已知双曲线C1:-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.
已知数列{an}的前n项和为Sn=-n2+n,求数列{|an|}的前n项和Tn.
已知等差数列{an}的前n项和Sn,且对于任意的正整数n满足=an+1. (1)求数列{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Bn.
已知数列{an}的前n项和为Sn=-n2+n,则数列{an}的通项公式为________________.
已知正整数列{an}的前n项和为Sn,且对任意的正整数n满足2=an+1. (1)求数列{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Bn.
已知数列an的前n项和公式为Sn=n2-23n-2(n∈N*). (1)写出该数列的第3项; (2)判断74是否在该数列中; (3)确定Sn何时取最小值,最小值是多少?