如图,已知双曲线C1:-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.
((本小题满分14分) 如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分) 第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。 (1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少? (2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
(本小题满分12分) 已知函数。 (1)求的最小正周期; (2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值。
((本小题满分14分) 设数列是公差为的等差数列,其前项和为. (1)已知,, (ⅰ)求当时,的最小值; (ⅱ)当时,求证:; (2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.
( 已知椭圆的左焦点及点,原点到直线的距离为. (1)求椭圆的离心率; (2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标.