如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.(1)求证:A1B∥平面AEC1.(2)求证:B1C⊥平面AEC1.
(本小题满分14分)在四棱锥中,//,, ,平面,. (Ⅰ)设平面平面,求证://;(Ⅱ)求证:平面;(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
已知三个正整数按某种顺序排列成等差数列。(1)求的值;(2)若等差数列的首项、公差都为,等比数列的首项、公比也都为,前项和分别为,且,求满足条件的正整数的最大值。
在锐角中,分别是内角所对边长,且满足。求角的大小;若,求
(本题14分)已知函数在处取得极值,且在处的切线的斜率为1。(Ⅰ)求的值及的单调减区间;(Ⅱ)设>0,>0,,求证:。
(本题15分)已知点是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.(Ⅰ)求椭圆E的方程;(Ⅱ)设A、B是椭圆E上两个动点,().求证:直线AB的斜率为定值;(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.