(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(Ⅰ)证明:;(Ⅱ)设三棱锥与四棱锥的体积分别为与,求的值.
在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.
已知椭圆:,(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
(原创)已知集合M是满足下列性质的函数的全体:存在非零常数T,对任意∈R,有成立.(1)函数是否属于集合M?说明理由;(2)若定义在R上的偶函数满足,求证:; (3)设函数且)的图象与的图象有公共点,证明:∈M;
在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知数列的各项均为正数,其前项和为,且满足,N.(1)求的值;(2)求数列的通项公式;(3)是否存在正整数, 使, , 成等比数列? 若存在, 求的值; 若不存在, 请说明理由.