(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(Ⅰ)证明:;(Ⅱ)设三棱锥与四棱锥的体积分别为与,求的值.
某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
如图所示,在棱长为2的正方体中,、分别为、的中点.(Ⅰ)求证://平面;(Ⅱ)求证:;
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)指出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“good sight”,若校医从“good sight”,中随机选取2人,试求抽到视力有5.2的学生的概率。
已知函数.(Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.
(14分)已知定义在R上的函数对任意都有,且当时,(1)求证为奇函数;(2)判断在R上的单调性,并用定义证明;(3)若,对任意恒成立,求实数的取值范围。