(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(Ⅰ)证明:;(Ⅱ)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分)已知椭圆以 为焦点,且离心率.(Ⅰ)求椭圆的方程;(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。(Ⅲ)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
(本小题满分14分)如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.(Ⅰ)求证:PD⊥面ABCD;(Ⅱ)求二面角A-PB-D的大小.
(本小题满分12分)某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0. 19.(Ⅰ)求的值;(Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?(Ⅲ)已知,求高三年级中女生比男生多的概率.
(本小题满分12分)已知.(Ⅰ)将化为的形式;(Ⅱ)写出的最值及相应的值;(Ⅲ)若,且,求.
(本小题满分10分)选修4-5:不等式选讲(I)已知都是正实数,求证:;(II)已知都是正实数,求证:.