(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(Ⅰ)证明:;(Ⅱ)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分)动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。(1)求曲线的方程;(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;(3)设,过点的直线(不垂直轴)与曲线相交于两点,与轴交于点,若试探究的值是否为定值,若是,求出该定值,若不是,请说明理由。
(本小题满分13分)已知函数.(1)若是函数的极值点,求的值;(2)求函数的单调区间.
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B在AM上,D在AN上,对角线MN过C点,已知|AB|=3米,|AD|=2米,且受地理条件限制,长不超过米。(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?(2)若|AN| (单位:米),则当AM、AN的长度是多少时,矩形花坛AMPN的面积最大?并求出最大面积.
设的公比不为1的等比数列,且成等差数列。(1)求数列的公比;(2)若,求数列的前项和.
(本小题满分12分)已知命题:,使成立,命题:恒成立。(1)写出命题的否定;(2)若或为真,且为假,求实数的取值范围。