(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(Ⅰ)证明:;(Ⅱ)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分)已知椭圆:的离心率是,其左、右顶点分别为,,为短轴的端点,△的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的右焦点,若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点.
(本小题满分14分)已知数列中,,且 (1)设,求数列的通项公式;(1)若中,,且成等比数列,求的值及的前项和.
(本小题满分14分)如图5,正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。
(本小题满分12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
(本小题满分12分)已知函数()的部分图像, 是这部分图象与轴的交点(按图所示),函数图象上的点满足:.(Ⅰ)求函数的周期;(Ⅱ)若的横坐标为1,试求函数的解析式,并求的值.