已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆C的方程;(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.
函数 (Ⅰ)判断并证明函数的奇偶性; (Ⅱ)若,证明函数在上单调递增; (Ⅲ)在满足(Ⅱ)的条件下,解不等式.
已知函数 (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)在中,若,,,求的值.
设全集,已知集合,集合,. (Ⅰ)求,; (Ⅱ)记集合,集合,若,求实数的取值范围.
设函数 (Ⅰ) 当时,求函数的极值; (Ⅱ)当时,讨论函数的单调性. (Ⅲ)若对任意及任意,恒有成立,求实数的取值范围.
已知椭圆的两个焦点,,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。 (1)求椭圆的方程; (2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。