已知函数 ,.(1)当 时,求函数 的最小值; (2)当 时,求证:无论取何值,直线均不可能与函数相切;(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。
(本小题满分12分)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)求密码被破译的概率.
(本小题满分12分)已知,且,求的值.
(本小题满分14分) 设函数的定义域为R,当x<0时,>1,且对任意的实数x,y∈R,有. (1)求,判断并证明函数的单调性; (2)数列满足,且, ①求通项公式; ②当时,不等式对不小于2的正整数 恒成立,求x的取值范围.
(本小题满分14分) 已知椭圆的焦点F与抛物线C:的焦点关于直线x-y=0 对称. (Ⅰ)求抛物线的方程; (Ⅱ)已知定点A(a,b),B(-a,0)(ab),M是抛物线C上的点,设直线AM, BM与抛物线的另一交点为.求证:当M点在抛物线上变动时(只要存在 且)直线恒过一定点,并求出这个定点的坐标.
(本小题满分14分) 已知,(),直线与函数、的图像都相切,且与函数的图像的切点的横坐标为1. (1)求直线的方程及的值; (2)若(其中是的导函数),求函数的最大值; (3)当时,比较与.