(本小题满分12分) 设函数(1)求函数的极大值和极小值(2)直线与函数的图像有三个交点,求的范围
已知函数在上为增函数,且,.(Ⅰ)求的值;(Ⅱ)若在上为单调函数,求的取值范围;(Ⅲ)设,若在上至少存在一个,使得成立,求的取值范围.
在长方体中, , 点是的中点,点是的中点. (Ⅰ)求证: 平面;(Ⅱ)求异面直线和所成的角余弦值;(Ⅲ)过三点的平面把长方体截成两部分几何体, 求所截成的两部分几何体的体积的比值.
设函数的定义域为.(I),求使的概率;(II),求使的概率.
已知△的周长为,且. (1)求边长的值; (2)若,求的正切值.
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数的分布列与期望.