设不等式的解集为.(1)求集合;(2)设关于的不等式的解集为,若,求实数的取值范围.
已知实数 x , y 满足: x + y < 1 3 , 2 x - y < 1 6 ,
求证: y < 5 16 .
在极坐标中,已知圆 C 经过点 P ( 2 , π 4 ) ,圆心为直线 ρ sin ( θ - π 3 ) = - 3 2 与极轴的交点,求圆 C 的极坐标方程.
已知矩阵 A 的逆矩阵 A - 1 = [ - 1 4 1 2 3 4 - 1 2 ] ,求矩阵 A 的特征值.
如图, A B 是圆 O 的直径, D , E 为圆上位于 A B 异侧的两点,连结 B D 并延长至点 C ,使 B D = D C ,连结 A C , A E , D E . 求证: ∠ E = ∠ C .
已知各项均为正数的两个数列 { a n } 和 { b n } 满足: a n + 1 = a n + b n a n 2 + b n 2 , n ∈ N * , (1)设 b n + 1 = 1 + b n a n , n ∈ N * ,求证:数列 { ( b n a n ) 2 } 是等差数列;
(2)设 b n + 1 = 2 · b n a n , n ∈ N * ,且 { a n } 是等比数列,求 a 1 和 b 1 的值.