如图,椭圆C0:(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.(1)求直线AA1与直线A2B交点M的轨迹方程;(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.
已知的图象经过点,且在处的切线方程是(1) 求的解析式;(2) 点是直线上的动点,自点作函数的图象的两条切线、(点、为切点),求证直线经过一个定点,并求出定点的坐标。
已知函数。 (1)求的单调区间;(2)如果在区间上的最小值为,求实数以及在该区间上的最大值.
已知两定点,动点满足。(1) 求动点的轨迹方程;(2) 设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。
如图,甲船在A处,乙船在A处的南偏东45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?