如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C; (2)求点B1到平面EA1C1的距离。
(本小题满分12分) 已知定义在R上的函数的图像关于原点对称,且x=1时,f(x)取极小值. (Ⅰ)求f(x)的解析式; (Ⅱ)当x∈[-1,1]时,图像上是否存在两点,使得在此两点处的切线互相垂直?证明你的结论.
(本小题满分12分) 设数列为等差数列,且,,数列的前项和为, (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.
(本小题满分12分) 如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.
(Ⅰ)求证:平面;
(本小题满分12分) 将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体 (Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率; (Ⅱ)从中任取2个小正方体,求2个小正方体涂上颜色的面数之和为4的概率。
(本小题满分10分) 已知向量,,函数 (Ⅰ)求的单调增区间; (Ⅱ)若时,的最大值为4,求的值.