如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1-CE-C1的正弦值. (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.
(本小题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R,都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”. (Ⅱ)观察下图:根据上图,试推测曲线的“上夹线”的方程,并给出证明.
(本小题满分13分)如图,已知椭圆:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点(4,0)且不与坐标轴垂直的直线交椭圆于、两点,设点关于轴的对称点为.(ⅰ)求证:直线过轴上一定点,并求出此定点坐标;(ⅱ)求△面积的取值范围.
(本小题满分13分)在数列中,其前项和与满足关系式: .(Ⅰ)求证:数列是等比数列;(Ⅱ)设数列的公比为,已知数列,,求的值.
(本小题满分13分)张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择哪条上班路线更好些,并说明理由
(本小题满分13分)已知的三个内角、、所对的边分别为、、,且,.(Ⅰ)求的值;(Ⅱ)当时,求函数的最大值.