如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD. (1)如图1,若⊙O经过点A,求证:BD+CD=AD; (2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数; (3)如图3,若AH=OH,求证:BD2+CD2=AD2.
某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元. (1)直接写出利润y与售价x之间的函数关系式; (2)当售价为多少元时,利润可达1000元; (3)应如何定价才能使利润最大?
如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m. (1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围; (2)求AB的长.
如图,E是正方形ABCD中CD边上任意一点. (1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形; (2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.
如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上. (1)若∠AOB=56°,求∠ADC的度数; (2)若BC=6,AE=1,求⊙O的半径.