在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
如图,在直三棱柱点D在(1)证明:无论为任何正数,均有;(2)当为何值时,二面角.
如图,三条直线、、两两平行,直线、间的距离为,直线、间的距离为,、为直线上的两个定点,且,是在直线上滑动的长度为的线段.(1)建立适当的平面直角坐标系,求△的外心的轨迹;(2)当△的外心在上什么位置时,使最小?最小值是多少?(其中,为外心到直线的距离)
(12分)已知两点满足条件的动点P的轨迹是曲线,与曲线交于、两点.(1)求k的取值范围;(2)如果求直线l的方程.
.如图,在三棱锥中,平面,,、、分别为棱、、的中点,,(1)求证:;(2)求直线与平面所成角正弦值.
.(10分) 如图,已知线段AB、BD在平面内,线段, 如果,(1)求C、D两点间的距离. (2)求点D到平面ABC的距离