在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点. (1)求椭圆的方程; (2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中. (1) 证明://平面; (2) 证明:平面; (3)当时,求三棱锥的体积
某班主任对全班50名学生进行了作业量多少的调查.数据如下表:
(1)请完善上表中所缺的有关数据; (2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系? 附:
已知数列是公差不为0的等差数列,,且,,成等比数列. (1)求数列{an}的通项公式; (2)设,求数列的前项和。
设向量,, (1)若,求的值; (2)设函数,求的最大值。