在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.
M为双曲线上异于顶点的任一点,双曲线的焦点为,设,求的值.
以圆锥曲线的焦点弦AB为直径作圆,与相应准线有两个不同的交点,求证: ①这圆锥曲线一定是双曲线; ②对于同一双曲线,截得圆弧的度数为定值.
设,求证:。
设,,求的最大值。
设P,Q为圆周上的两动点,且满足与圆内一定点,使,求过P和Q的两条切线的交点M的轨迹。