如图1,在矩形纸片ABCD中,,其中m≥1,将该矩形沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设,其中0<n≤1.(1)如图2,当(即M点与D点重合),时,则 ;(2)如图3,当(M为AD的中点),m的值发生变化时,求证:;(3)如图1,当,n的值发生变化时,的值是否发生变化?说明理由.
某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.
如图,已知正方形中,点是上的一点,连结,以为一边,在的上方作正方形,连结.求证:.
如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.
解方程:.
如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。 (1)求抛物线C2的解析式; (2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积; (3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。