如图,长方体中,,G是上的动点。(l)求证:平面ADG;(2)判断与平面ADG的位置关系,并给出证明;(3)若G是的中点,求二面角G-AD-C的大小;
(本小题满分12分)已知:,,函数.(1)化简的解析式,并求函数的单调递减区间;(2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
(本小题满分12分)已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知等式,其中( =0,1,2,…,100)为实常数.求:(1)的值; (2)的值.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤. 如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,. (1)当时,求直线AP与平面BDD1B1所成角的度数; (2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.
选修4-5:不等式证明选讲 已知函数. 若不等式对a¹0, a、bÎR恒成立,求实数x的范围.