下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.(l)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
如图,四棱柱中,平面.(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;①,②;③是平行四边形.(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.
已知椭圆的对称中心为坐标原点,上焦点为,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设为轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.
小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:
试依据以频率估计概率的统计思想,解答下列问题:(Ⅰ)计算小王某天售出该现烤面包超过13个的概率;(Ⅱ)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量. 试求小王增加订购量的概率.(Ⅲ)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.
已知,函数的最小正周期为.(Ⅰ)试求的值;(Ⅱ)在图中作出函数在区间上的图象,并根据图象写出其在区间上的单调递减区间.
已知函数(1)当时,讨论函数的单调性:(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.